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The approximate Nakayama-Koyama integral approach is compared with an exact similarity 
solution for a free stream of the form Uocx 1/=. It is demonstrated that the approximate 
method fails for highly pseudoplastic fluids (n<nc,),  and the variation of ncr with the 
free-stream exponent m is provided. Finally, the applicability of the high apparent Prandtl 
number asymptote is considered, with emphasis on the stagnation point flow. For n =  1.6 
the heat transfer rates are more than 10 times higher than those predicted by Nakayama 
and Koyama. 
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Introduction 

An approximate computational procedure for laminar forced 
convection heat transfer was first proposed by Nakayama et al. 
for Newtonian boundary layer problems I and later extended 
to non-Newtonian power-law fluids. 2 tf the free-stream velocity 
belongs to the Falkner-Skan family, 

U~ = a  (1) 

the general equations for momentum and thermal energy reduce 
to simple algebraic expressions for the local wall friction and 
high apparent Prandtl number heat transfer rate? 

The purpose of the present note is threefolded. First, the 
approximate Nakayama-Koyama expression for the local skin 
friction coefficient is compared with accurate similarity solu- 
tions 4 for the particular parameter value m= 1/2. Then it is 
demonstrated that the Nakayama-Koyama approach fails for 
highly pseudoplastic fluids. Finally, the applicability of the high 
apparent Prandtl number asymptote for the heat transfer rate 
is discussed. 

Momentum boundary layer problem 

To provide a rapid and accurate calculation procedure for non- 
Newtonian boundary layer problems, the classical von Karman 
integral momentum approach was extended to the corresponding 
non-Newtonian problems. 2 Only inelastic fluids which obey 
the so-called power-law model 

lOul"- 10u 
z = K ~yy Oy (2) 

were considered. In most boundary layer analyses, the wall 
shear stress z .  is an essential variable, from which the local 
skin friction coefficient can be defined as ct = 2~,,/pU 2. For free 
streams of the particular form of Equation l, this important 

parameter can be evaluated from the relation 
[mC2\n/(n + 1) 

cf Relx/(n+ l ) = ~ )  (3) 

where 

= ~SU a~ w (4a) C 

A =  1 32 02u 
6 U ~y2 w (4b) 

are shape factors, m is the free-stream exponent, and Rex-  
pxnU2-n/K is the local Reynolds number. 

Assuming that the streamwise velocity component in the 
viscous boundary layer can be approximated by the Pohlhausen 
polynomial of fourth degree, the general integral equation is 
reduced to the simple algebraic relation: 2.a 

AG 
m = (5) 

(1 + n X 6 - A ) )  l + n  C - A  3nG-t 
6n 2-O / 

where the shape factors C and G become 

C = 2 + A (6a) 

148-  8 A -  5A 2 
G -  (6b) 

1260 

Thus, for given values of the Falkner-Skan flow parameter m 
and the power-law index n, the shape factor A is obtained 
iteratively from Equation 5. Subsequently, the local skin friction 
coefficient is evaluated from Equation 3. 

Thermal boundary layer problem 
Of particular interest in many industrial applications is the heat 
transfer rate between the wall and the fluid. The local heat 
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Shape factor C versus shape factor A for m = 1/2 

transfer rate is then conveniently expressed as a local Nusselt 
number 

x ~3T 
N u . -  T w i T  ° t3y w (7) 

where T o denotes the temperature in the bulk fluid. In accordance 
with the assumption for the velocity profile, the temperature 
profile in the thermal boundary layer was approximated by a 
fourth-degree polynomial. 2,3 Nakayama et al. were then able 
to derive simple asymptotic expressions for the local heat trasfer 
rate in the extreme Prandtl number cases. According to 
Nakayama and Koyama, 3 the Prandtl number is quite large 
for most practical problems involving non-Newtonian fluids, 
and the important high Prandtl number asymptote becomes 

[ (  m ~/("+~) 2C 
Nux Re;'/(" + ' ) =  k \ ~ /  1~ 

• ( l + m  (1-n)(1--3m)~]m/aprl/3 
JJ x (8 )  

where the local apparent  Prandtl number is defined as 

pr=_Pcj,(K~2/("+')(x_y' ")/"+") 
k . \ p J  ~kU3J (9) 

1.2 

1 R+~ 
cf Re  x 

1.0 

- -  e q . 5  
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Figure 2 Variation of local skin friction coefficient with power-law 
index for m = I/2 

While the wall temperature T w is allowed to vary in the stream- 
wise direction in the Nakayama-Koyama approach, only the 
case of an isothermal wall is considered here. 

The heat transfer rate can now be evaluated from the explicit 
formulae (8) for given values of the flow parameter m and the 
power-law index n, once the shape factor A has been obtained 
from Equation 5. 

Results and discussions 

The momentum boundary layer equations for power-law fluids 
possess similarity solutions for free streams of the Falkner-Skan 
type (1). 5 An accurate finite-difference solution of the similarity 
problem for the particular parameter value m = 1/2 has recently 
been provided by Andersson and Irgens. 4 The shape factors C 
and A derived from that solution are compared with the 
approximate result (6a) in Figure 1. The separation between the 
line and the symbols indicates how accurately the Pohlhausen 
profile approximates the exact similarity profile in the near-wall 
region. The resulting variation of the local skin friction coefficient 
with the power-law index is shown in Figure 2. The approximate 
results evaluated from Equation 5 closely approximate the 

Notat ion 

a Free-stream parameter 
£f Local skin friction coefficient 
Cp Specific heat 
C Shape factor 
G Shape factor 
k Thermal conductivity 
K Coefficient of consistency 
L Length scale; radius of cylinder 
m Free-stream parameter 
n Power,law index 
Nu Nusselt number 
Pr Apparent Prandtl number 
Re Reynolds number 
T Temperature 
u Streamwise ve!ocity component in boundary layer 

U Free-stream velocity 
x Streamwise coordinate 
y Cross-stream coordinate 

Greek symbols 
f Momentum boundary layer thickness 
A Shape factor 
p Density 
z Shear stress 

Subscripts 
cr Critical value 
0 Bulk fluid 
w Wall condition 
x Local value 
oo Approaching flow 
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Figure 3 Variation of m with A evaluated explicitly from Equation 5 
for different n values 

similarity solutions over the n-range considered. The approxi- 
mate results are slightly below the similarity solutions for 
pseudoplastics and somewhat above the similarity results for 
highly dilatant substances (n >~ 1.5). 

It may be observed, however, that approximate results are 
shown in Figure 2 only for dilatant fluids (n > 1) and slightly 
pseudoplastic fluids (n~< 1). This is because the implicit ex- 
pression 5 for A does not yield realistic solutions for arbitrary 
combinations of m and n. Figure 3 shows the variation of m 
with A for some different n values, as calculated explicitly from 
Equation 5. For  the pseudoptastic fluids m is a monotonically 
increasing function of A in the range 0 < A  <2. At A =2,  m 
reaches its maximum value and then starts to decrease as A is 
further increased. 

For  a given value ofm the solution for A should be obtained 
as the intersection between the curve corresponding to the 
actual n value and the horizontal line m = constant. According 
to Figure 3, solutions can be obtained for any dilatant fluid, 
but only for slightly pseudoplastic substances. More specifically, 
solutions of Equation 5 are prohibited if the power-law exponent 
is below a certain critical limit no,. The variation of no, with m 
is displayed in Figure 4, which shows that nc, is a monotonically 
increasing function of the Falkner-Skan flow parameter m. In 
the particular case m= 1/2 considered in Figures 1 and 2, for 
example, n~, is slightly below 0.8. 

The failure of Equation 5 to give solutions for A if n < new 
has not been observed by Nakayama and Koyama. 2'3 However, 
it is well known 6 that the Pohlhausen profile gives u > U within 
the momentum boundary layer for A > 2, which is physically 
incorrect for steady flows. The shape factor A should therefore 
be restricted to values below 2, which incidentally correspond 
to the range n/> n , .  

The local apparent Prandtl number defined in Equation 9 
plays an important role in the heat transfer analysis. For  free 
streams of the form of Equation 1, the streamwise variation of 
Pr x becomes 2,3 

Pr x oc x ~1 - 3m)(~ -.)/~1 +,) (10) 

which implies that Pr= ~ 0 as x --* 0 if m < 1/3 for pseudoplastics 
and if m > 1/3 for dilatant fluids. On the other hand, Pr= tends 
to infinity as x --* 0 ifm > 1/3 for the pseudoplastics and ifm < 1/3 
for the dilatant substances. The high apparent Prandtl number 
asymptote (8) should therefore be used near the stagnation 
point in the latter cases only. 

In their recent paper, a Nakayama and Koyama applied the 
high apparent Prandtl number asymptote to estimate the heat 
flux in the stagnation region on a circular cylinder in crossflow. 
The experimental investigation by Shah et al. 7 on a cylinder 

immersed in a non-Newtonian crossflow, showed that the free- 
stream velocity can be approximated as 

U ( x ) -  2 0.92 -0.131 (11) 
U~ 

where U® is the uniform stream velocity approaching the 
cylinder and L is the cylinder radius. Near the stagnation point 
x = 0 the second term can be neglected and Equation 11 reduces 
to the Falkner-Skan form (1) with m = l  and a=1.84, i.e., 
stagnation point flow. Nakayama and Koyama a evaluated the 
heat transfer from the cylinder to a dilatant fluid (n = 1.6) from 
Equation 8. However, it is evident from Equation 10 that Prx 
tends to zero rather than to infinity at the stagnation point, and 
the high apparent Prandtl number asymptote (8) should not 
be used in the stagnation point area for the dilatant fluids. The 
relevant expression for the local heat transfer rate is therefore 
the low apparent Prandtl number asymptote 

Nu x Re:  1/,,+ a,= (3(m + 1)'~ l/2Prxl/2 (12) 
\ lO / 

derived by Nakayama et al. 2 This result can be rewritten as 

N u R e - ' / ' " + l ' = ( 3 a ( m + l ) P r y / 2 ( x - ~  ' ' - ' ' / 2  (13) 
\ 10 / k L /  

where 

L dT L 
= -  Nu= (14a) 

NU= T w - T ° a Y  w x 

n 2 - n  pL U= 
Re= (14b) 

K 

(KT,.+,, ( L T-.,/,, +o, 
e r =  kpct' \ p j  \ ~ 3 £ j  (14c) 

denote an alternative local Nusselt number, and characteristic 
Reynolds and Prandtl numbers, respectively. 

In order to make comparisons with the predictions of 
Nakayama and Koyama, 3 the local heat transfer rate is 
evaluated from the low apparent Prandtl number estimate (13) 
with m= 1 and a=0.92. (Unfortunately, the factor 2 in the 
empirical free-stream distribution (11) has been overlooked by 
some investigators. 3'8) For  the particular case of stagnation 
point flow (m= 1) the heat transfer grouping NuRe -1/~"+1) 
becomes independent of x. For  P r =  10 and 100, for instance, 

2 

n 1 

ncr 

O, 
0 1 m 

Figure 4 Range of applicability. Shaded areas indicate the range 
over which the Nakayama- Koyama high Prandtl number expressions 
are directly applicable. The asymptote (8) can also be applied in 
the crosshatched range. 
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Nu Re-1/t,+ 1)is equal to 2.349 and 7.430, respectively. These 
heat transfer rates are more than 10 times higher than those 
obtained by Nakayama and Koyama using the high apparent 
Prandtl number asymptote (8). 

The low apparent Prandtl number asymptotes, Equations 
12 and 13, which apply in the stagnation region for dilatant 
substances, are independent of the power-law index n. This is 
because the ratio of the momentum boundary layer thickness 
to the thermal boundary layer thickness tends to zero as Prx--* 0. 
Physically, this means that the temperature field adjusts from 
T, to To in fluid with velocity U(x). Thus, as a first approxi- 
mation, the viscous boundary layer does not contribute to the 
heat flux through the wall, and the local Nusselt number 
becomes independent of n according to Equations 12 and 13. 
More accurate approximations for Newtonian fluids, taking 
into account the displacing effect of the momentum boundary 
layer, have been discussed by Andersson. 9 It can thus be 
anticipated that an exact solution for the heat transfer grouping 
Nu Re-1/~,+ 1) will depend on n except at the stagnation point 
.X~0. 

Finally, we mention that exact similarity solutions of the heat 
transfer problem are possible only for m = 1/3, while similarity 
solutions of the momentum boundary layer problem can be 
obtained for any m >i 0. Improved accuracy of the heat transfer 
estimate (8) can therefore be achieved if the shape factors A 
and C defined in Equation 4 are taken from accurate similarity 
solutions of the momentum boundary layer problem, e.g., those 
provided by Hsu, 1° rather than from the approximate relation 
(5). Moreover, the failure of Equation 5 for n < ncr is thereby 
circumvented. 

Conclusions 

It has been demonstrated that the Nakayama-Koyama approach 
accurately predicts the local skin friction coefficient for the free 
stream U oc x 1/2. Moreover, it is revealed that no solution can 
be obtained for n < no,. Full application of the Nakayama- 
Koyama expressions for high apparent Prandtl numbers is 

therefore possible only for certain combinations of the power- 
law index n and the free-stream exponent m, as indicated by 
the shaded areas in Figure 4. However, if the shape factors C 
and A can be obtained by any other means, the high apparent 
Prandtl number asymptote (8) is applicable also in the cross- 
hatched area in Figure 4. 
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